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NOMENCLATURE

a,a,,a,, ag, b= constants

= a; cog B +a, sin g

> >

= atmospheric force

c = exhaust velocity

ki dnd i b T Ne Sk S TiB b s e e

C = constant of integration
Cp = drag coeificient

1}

zero-lift drag coefficient

Q
6

L lift coefficient

C = slope of the lift curve

CER A Lo B L O b 4 AR

o
"

drag

R OB
*

)
1

switching function

= lift

=
[-
3 E = maximum }ft-to-drag ratio S
:
A E g, 8 = acceleration of the gravity (vector) :
< §
> s ke
F K G = term independent of p and T (Eq. II.13) 3
B = hamiltonian ;
3 J = performance index ;
; k = induced-drag coefficient 3
3
E ,g
2

mass of the rocket

2 B

mach number

R M AR

o P = adjoint variables ;
’:;:c:, L3 -~ - R , é
£ P.: B, P = adjoint vectors (or variable) s %
%: r 'y om § |
¥ g
Z5 ess B
= viii § 3
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P = power of the propulsion system
¥ = position vector of the point mass

R = reference length
s = arc length

: § S = reference area

f : t = non-dimensional time

t! = real time

t ' T, T = thrust vector, magnitude

; u = dimensionaless velocity

’ \' = velocity j

w = dimensionless weight f ;%

W = weight of the rocket g

\ x = dimensionless longitudinal range

3

X = longitudinal range E
y = dimensionless lateral range é
Y = lateral range g
a = angle of attack
B = heading angle
A = lift control :
xM = maximum lift control ;3
A = A% gt - w? A
n = serodynamic parameter ?’
P = air mass density
Po = air mass density at reference level .
o = bank angle
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I. INTRODUCTION

This report presents the results of a study to evaluate thrust magni-
tude control (TMC) in Air Force missions. In this study, modern control
theory was applied to determine the ime history of the thrust profile to
achieve optimal maneuvers of aerospace lifting vehicles.

This report consists of five parts, After an introduction, ‘we give a
general discussion of optimal thrust magnitude control in Chapter II, A
mathematical model for a very general propulsion system, the system (S),
was formulated. From this system we deduce the most commonly used
system, the system (S,), where the exhaust velocity of the gas ejected
from the engine is constant, Optimal control laws for the thrust direction,
and the thrust magnitude are obtained. It is shown that coast, boost, and

sustaining thrust all may be optimal. In the singular case of sustaining

flight it is shown *hat:

1. Along the sustaining flight path, ‘the position vector -5, the velocity
vector v and the mass m of the rocket vehicle must satisfy a certain rela-
tion obtained explicitly. .

2. The variable thrust magnitude depends strongly on the aerody-

namic characteristics of the vehicle, and the optimal trajectory flown,

The results in this chapter were obtained for a Newtonian gravitation-
al force field, In the remaining part of the report we consider in detail the
particular case of turning flight in a horizontal plane, in a uniform gravi-
tational field.

In Chapter III we present an analytical approach to the solution for
minimum time, lateral turns in a horizontal plane of a lifting missile, To
simplify the problem, it is assumed that tre thrust direction is always
aligned with the velocity vector. The lift and the bank controls and the
thrusting program for the three types of optimal arcs involved are ex-
pressed in terms of the state variables and a set of constants of integration.

Hence, the variational problem is resolved ultimately to a multi~point

Nt TN g b T30 7= o' SR e r N .
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boundary-value problem. For the case of rectilinear flight, and for the

case of turning flight with the final position being free, it is shown that

EYPY UL FPLR

the variable thrust magnitude is given by (see Table of Nomenclature for
the notation)

T \

FpSciC f(<.2) @.1)
0 g

where f is a known function of V/c¢ and a constant of integration "a', Fur-

thermore, the function f is insensitive ic "a''. Hence this formula displays |
explicitly the variation of T in terms of the flight velocity, or equivalently, 3
as a function of Mach number, We notice that T is proportional to the zero '
lift drag coefficient CDo , and the atmospheric mass dentity p. Hénce, the
variable thrust magnitude for sustaining flight is an exponential function of

the altitude. This formula gives a complete criterion {or the programming

of the variable thrust profile,

Chapter IV gives the numerical results of the same problem, In this

i

chapter a discussion of the computer program used to comnpute solutions to

fully constrained problems is presented along with simulation results for

X {prtidy

representative cases. While in Chapter III, to ease the analytical discus-
sion, it is assumed that the aerodynamic characteristics CDo and k in the

parabolic drag polar representation
= 2
CD CDo o) + k(M)CL (1.2)

were independent of the Mach number, the numerical program discussed in

<<
g
B
B
%
E s
-
-
o

Chapter 1V has provision for inclusion of these variations,

In the concluding chapter, Chapter V, we discuss the five types of

rocket motors used in Air Force missions in order of increasing thrust

T A T

Lade e L

controllability. A qualitative analysis was carried out for some typical

missions. The numerical simulations indicate that the percentage perform-
ance gain with throttling increases with the difficulty of the mission (espe-
cially position wrget missions).
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II. OPTIMAL THRUST MAGNITUDE CONTROL

Optimal thrust magnitude control for flight in a vacuum has been dis-
cussed by Leitmann (Ref. 1) and Marec (Ref.2). For flight inside an atmo- |
sphere, partial results mainly concerning a rocket engine with constant
exhaust velocity mounted rigidly fixed to the vehicle flying in a flat earth
model have been obtained by several authors (e.g., Bryson and Lele (Ref.
3)).

In this chapter we extend the results of Marec concerning a general
propulsion system to the case of flight in a general force field and in a re-
sisting medium.

11.1 The Propulsion Systems

Let T be the thrust developed by the engine. It is assumed that the
direction of the tiirust can be taken arbitrarily. It will be shown that in this
case the optimal thrust direction is parallel to the vector Ev’ associated to
the velocity vector. The two remaining control parameters are the thrust

magnitude T and the mass flow p = -% .

Let us define a general propulsion system (S) in the (I',8) space (Fig.
I.1). Let ¢ be the exhaust velucity of the gas ejected from the engine.
The thrust magnitude is then
T = Bc . 1)

The power cf the propulsion system is

. Tec _ T?
= - 2 = cmtmm 2 e
P=4(-m)c* == 38 1. 2)
The power being limited by
<
P=EP " {11. 3)

the control domain in the (T,f) space is bounded by the parabola OABC
given by the equation

2 -
T szaxp (i1. 4)

In the general system, system (S), we assume that the exhaust velocity is

g;.
Z
o
B
2
g
=
3
3
3
#
]
3
3
g
i
I
Z
P
3
3
%
=
=
2
3
2
]
=
3
=
E
El
3
5
2
g
1
ks
)
2
g
g
3
A
F
i
-
*
4
4
3
X
3
i
3
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bounded by
' c . Scsc (11. 5)
min

This further restricts the contrsl dornain in the (T,p) space. In general
the mass flow is bounded by

p= ﬁmax ('L, 6)

and the resulting control space is shown in Fig, 11, 1.

We notice that the thrust magnitude is bounded (Fig.Ii.1)
< = 3
T = Txnax mm(TB,Tc) (i1.7)

From the general propulsion system (5) we have the following special cases:

If the exhaust velocity is constant, ¢_. =c¢ = ¢, we have the sub-
cin  “max
system (S,) (Fig.IL. 2).

In this system, the only control parameter left be-
sides the thrust direction is either the mass flow g, or the thrust magnitude
T. The thrust is bounded by
<P < ’
0=Ts= Tmax (11. 8)
For an ideal electric propulsion system, the gubsystem (S;) (Fig.IL.2),

we have

Cmin - %% ®max = 2 Pmax © % (. 9)
The control space is bounded by the limitation of the power only.

In the following, we shall examine the thrust megnitude control of

these models with a detailed analysis of the system (S;), namely a rocket
engine with constant exhaust velocity.

1I1.2 Optimel Thrust Magnitude Control

The motion of a vehicle, considered as a mass peint, flying in a gen-
eral gravitational field and subject to aerodynamic and thrusting forcesz, is
governed by the equations

dr

=V
dt

. e s 2 S EEPR o 1 = TIES WG

R SRR S 7.
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5 5
dv - 1 = ~ paadg ' ‘
Gt " m (T tA) rERY (IL. 10} 3%
dm __ T 3
dat ¢© .
Using the maximum principle, for a minimizing problem, we form the ;5
Hamiltonian 4
H=F_ V+3 (=@ +K)+8-p_© (IL 11) :
r v ‘m m C *

P

where 'ﬁr, Ev and P, are the adjoints to T ,Vand m,

For optimal thrust control, we maximize H with respect to .'I" Con-
sider the vector Sv’ called the primer victor. For the direction of .'f, .
maximizing H is equivalent to selecting T such that the dot product P, - T,
is maximized, Hence we have the generalization of Lawden's law for flight
in a vacuum, namely that the direction of T chould be orientated along the

vector 'ﬁv and

S T RN Ay T AN S S Rt

mx@v +T) = va (11, 12)

AT, TN UL T JOPL COTIT TR AT TR STIC MDA SARIN W 1 4T ML T R LT LT A

where P, is the magnitude of T. Using this condition and upon replacing ¢
by T/p we rewrite the Hamiltonian (II.11)

P, 3

J H--pmp+ET+G (I1. 13) i
3 E where G is independent of the control elements g and T, 2
B i
1 g We shall consider successively the maximization of B in the control g
; % space (T,pB) for the different propulsion systems (S), (S;) and (S;). 3
- f;
é 2 I1,2.1 Optimal Tarust Magnitude Control Using the System (5) é
] ES At each instant t, the equation H = constant is the equation of a msgraight 3
s ¢ line in the plane (T,p) (Fig.I1.4). The slope of this straight line is — -
3 H v
’ The operating point in the (T, ) space depends on the value of this slope. :

Whenpg =0

TN RGN

-
o T g i SR T 4 e i B A - . e S taia = Saca. e s T S i - “‘J




-2 m-q (1. 14)
pV

L

Since m/ P, is positive, to maximize H we select the operating point p in

the bounded domain (T, ) representing the system (S) such that Tp=o is

maximum possible, Hence we have the following cases.
mp
m > cmax we ghould select the point O, T = 0 {(coasting
v
flight).

1. If

b, ® Chax’ the operating point can oe anywhere in the seg-

ment OA, We have T = variable, withc = € ax’ We have the

casge of sustaining flight. (Singular case)
®max MPp,
3. If 3 -

T € A N T N R L R S ST R A O R A R I S KR ol

c
. . mex .
5 7, <e¢ <’ by noticing that > is the slope of

the tangent to the parabola AB at the point A, we deduce that the
maximum of H is obtained by using the point A, The thrust mag-

e oy

nitude is constant (Boosting flight at consiant thrust)

: 2P
i T=T, = ——~ (11.15)
5 A “max
g The corresponding mass flow is
max
; p = —oX (L. 16)
; max
' CB Cc MPr ®max
; 4. If max(—z—-, -2—-) = o s > the operating point is on the
I - v

arc AB (or A?Z) of the parabola (II.4). The thrust magnitude is

variable and is given by

P
T=—7—— 11.17)

Hence it is determined by the ratio pvl mp_ . The corresponding

mass {low is

| - %(:;’m)zpm . 18)

2 At N Wt b SIS RV L v i
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mp cC, C

5., If —2 < max(—2£ ,~>), the operating point is at the point B (or

v
C). The thrust magnitude is at the maximum constant thrust

(Boosting flight at maximum thrust).

Hence for a system (S) we have five types of optimal arcs.

1. T =0 (Coasting Arc)

2, T = variable at low level (Sustaining Arc at low thrust)

3. T = constant at low level (Boosting Arc at constant thirust)
4. T = variable at high level (Sustaining Arc at high thrust)
5, T = T oy (BOOSting Arc at maximum thrust)

Besides the singular case (case 2) which cannot be treated by first order

theory, the thrust magnitude control is governed by the quantity mpm/ |

11.2.2 Optimal Thrust Magnitude Control Using the System (S;)

The optimal thrust magnitude control for the system (S;) can be
easily deduced from the results concerning the more general system (S).
The operating point is always on the parabola given by Eq. (II.4). Hence
the thrust magnitude can be taken as the control available, the engine being
operated at maximum power for any mass flow, The optimal thrust mag-

nitude is given by

=5~ Proax (L. 19)

Hence it is a function of the quantity pv/ mp .

1I.2.3 Optimal Thrust Magnitude Control Using the System (S;)

Finally, let us consider the propulsion system represented by the
model (S,). The exhaust velocity being constant, the thrust magnitude can
be used as the unique control. Using the same geometric approach as for
the system (S) we can easily show the three types of optimal arc

mp

1. If —2

> ¢, we take T = 0 (coasting arc)
v

——

- . .-
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mp
2, If > = c, we take T = variable (sustaining arc). This case is
v

the singular caseand the thrust magnitude cannot be decided by the
first order theory.
mp,

3, If —2 < ¢, wetake T = T___ (boosting arc).
pV

o Vs U PR R R R M R L LA e

YT

Analytically, using the optimal law (II. 12) for the thrust.direction, we re-

- write (II, 11) for this case where c = constant,
3 mp
; 4 -y -y -t -t l -t - T m
> = . + * 4 —— . + —— - z
1 H=p. -V*+p g+~ A+, -—) (1. 20)
3 We define the switching function
| mp,
t, / K= | . Il.21) :
3; ' Then, to maximize H with respect to T: '_4
if K<0, weselectT =0 :
if K =0, we select T = variable j
if K>0, weselectT = Tmax' :
3 4
i We notice that, if the gravitational field is time invariant, the Hamiltonian
; i H is a constant of the motion. ’
N To derive the expression for the variable thrust magnitude control, ‘
: % we notice that in this case K = 0, and we have the relation E
3 _mp :é
: ; Py "3 (1.22) q
: 3
3 d
T At this point, it is necessary to make assumptions concerning the atmo- 3
- P4
1 spheric force A and the acceleration oi the gravitational field g. : : ¥
3 i
We assume that ! {
. - " : :
A =4pSV?a (1. 23)
,3
where p is the atmospheric mass density 3
“AMr-R 3
p = poe MR (IL. 24) ]
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where R is a reference length, usually taken as fhe radius of the planet and
\ is the Leight scale constant. We shall consider a Newtonian gravitational
field

b

With these assumptions we have the equations for the adjoints

rslrsd

(I1.25)

r _ - v - AN T
.dT'_ﬁlp it b, AT
dp, ., 2p,-A),
& TP T Y (1.26)
dp
m l] » = 1
dt =‘1'5!(PV'A)+‘52})VT

E Now, along a sustaining arc, the equation (II.22) is identically satisfied for

a finite time interval. Hence we can take its derivative to have

d
FER el B e,
Using (II.22) we have
s %‘1 ) mlc (ﬁv - K) aL.27)
f On the other hand
Pv:iai"v =-};v fgg ) -Sr '-§v° il :\)I& = (11.28)

4 By eliminating dpv/ dt between the last two equations, we have another re-
lation for sustaining flight

. (5V.K) 2¢, V)
PP, o [P, t -—‘71"'—] 11.29)

o

Using the Hamiltonian (I1,20) along a sustaining arc we can give this rela-

tion another form incependent of the aerodynamic fo(g'ce
2c +V)
~ely B = [B-B,-V+ 5B Flp, + —r—] (I1. 30)
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If the adjoints '5r and 'ﬁv can be found, this equation gives the relationship
among the state variables T,V and m along a sustaining arc. Special cases

of this reiation, mainly for flat earth model and horizontal flight have been
obtained by various authors (e.g., Ref.3).

We also notice that, if the aerodynamic force ia vanishingly small,
then from (11.29)

P, P, © 0 (11,31}

We have the classical result for orbital transfer in a vacuum, namely along

a sustaining arc where the thrust magnitude is variable, the two adjoint
vectors Br and 'ﬁv are orthogonal.

The thrust magnitude along a sustaining arc is obtained by taking the
derivative of the singular relation (i, 30).
tion we have

.rf B -V
b - 2] B

After some algebraic manipula-

®. - A) ®. - A) ¢, -7 4, VAV
L, Yy -y T
zxc(’ V) (p A) 4(p V)

“'r‘”[ Y+ pv(u;%‘{-,ﬂ] -—'7—[ a+ 8+ S ]T

{11.32)
We see that if ('5v -X) # 0, the variable thrust magnitude can be obtained

irom this relation, Some special cases of this equation, giving T explicitly

in terms of the dimensionless velocity V/c will be presented in the next
chapter,
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Fig.ll.2 Propulsion System (S,;)
(c = constant)
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ilI. ANALYTICAL SOLUTIONS

In this chapter we present 2n analytical approach to the solution for

0
=
pr
3
v
L:

minimum {ime, lateral turns in a horizontui plans of a lifting missile. The

lift and the bank conirols and the thrust.ng program for the three types of

optimal arcs involved wili be expressed i1a terms of the state variabies and
a set of constants of integration, Eence, the variational preblem is resolved
ultimately to a multi-point oundary-value problem,

Simple cases where certain end-conditions are relaxed cen be solved
anelytically, Furthermore, in these cases, the varizble thrust profiles are

obtained explizitly, thus allowing constructive suggestions for the design of
TMC rockets.

1I.1. Equations of Flight in a Horizontal Plane

; The equations cf moetion for a coordinated turn in a horizontal plane,
with the thrust always aligned with the velocity, are (Fig.III 1)
X _

3 i an V cosp
;‘ i dY _ .
i an V sing
3 ! dv _ (T -D)

i T m (11.1)
3 i y88 . Lsine

| dtt m
£ gm __T
E ' dat! C

The notation is given in the nomenclature section, Note that we use ¢' to

designate the real time, For the flight to stay in the horizontal plane, we
have the constraining relation

I, cose = mg (11, 2)
The drag polar used is a parabolic drag volar
1 . 2
CD CD° + kCL (111. 3)

13




In order to obtain an analytical solution, we shall assume that the zero-lift

drag coefficient C and the induced drag factor k are independent of the

Mach number and the Reynolds number, This is especially true for flight

in the hypervelocity regime, Aerodynamic configurations and flight rcgimes
wherce these coefficients depend on the Mach pumber will be considered in
the next chapter where a complete numerical solution for a specified typé of

misgeile wili be presented. We shall use the usual agsumption for the lift
and drag forces of the form

L= -ipsc1 V2
: (111, 4)

D=4 pSCDV“

To obtain general optimal laws for a general type of missile we intro-
duce the nondimensional quantities

B LB

C
= mg : . T
w - < =
4 pSc? CDOHE R PY-7 CD° (1. 5)
A NEC— = L
veg s niNECp, TR

If the angle-of-attack, or equivalently the lift coefficient CL' is not con-
strained, a natural choice for the aerodymamic control would be the bank
angle c. Then, the lift and the drag coefficients will be obtained from (111, 2)
and (11I.3). In the practical case where the lift coelicient is bounded, the

corresponding bound on the bank angle is a function of the state variables

m and V through the relation (1II.2). Hence, the lift coefficient will be a

better choice as control parameter.ia this case,

We define a lift control parameter A such that A? is the ratio of the
induced drag to the zero-lift drag.

kC?
)\2 = __IJ_

| (11 6)
CD° ]

‘Then we lave
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= = 2
Cp =NCL TE N, Cpy =Cp (422

11, 7)
I . NATut-we _\NA\TuF -we
co8 o = 'i"‘ﬁz » sing = _ﬁt—_.’ hnoﬁ = ———-:*—-———

We notice that when A =1, the flight is effectuated at maximum lift-to-drag
ratio E*,

The independent controls are T and A\, They are bounded in the space

0T ST
M (111, 8)
¢ =X S AM
The state equations become, with the nondimensionai variables,
-g‘—:— = ucosfp
—g% =usinp
du .
i %[‘r - @ +2\Hu?] (1. 9)
g _ ATuT - w¥
dt uw
L dw
@& -
dt
@ 1

To write the variational equations for optimal trajectories, we introduce
the adjoint components p;, 4=0,....5), to form the Hamiltenian

2.2 -
sinp) - T8I0, PONIIT-WE 0, )

(11, 10)
The P i=1,...,5, are respectively paired with the first five equations
(111, 9) while py is associated to the last equation, These acdjoint variables
satisfy the equations

H =po +u(p;cosp +p;

gpy .
dt

— —— Rt e ]
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dp,
dt

i
(=]

dp
52 =
at 0

2
2B - - (pycos p+p,sing) + ZAM

7

0\2 4 +W22

w ~

&

at u(p; sin - p, cos )

_E: i n(1+>»’)u At LS

wusNRZut - we
(111,11)

N
The solution to the problem is obtained by integrating the system of state
equations (IlI.9), and adjoint equations (I1I,11) with the appropriate end-

conditions, while selecting T and A\, subject to the constraints (IIl.8), i

such a way that, at each instant, the Hamiltonian H given by (I11.10) is an

absolute maximum.

1ii.2. Optimal Controls

The problem, as formulated, has a number of integrals of the motion.

First, H does not contain t explicitly. Since the final time is not specified

B = constant = 0

we see that p, = constant, and for minimum time problem

Po=~-1
Also, from the adjoint equations

p; =a; = consiant

p; =a, = consiant

Using these relations we write the equation for

d d dx _d
‘% = ax'a% - arg; C gy -ax)

Upon integrating

P Tayy-axtay

where a, is a constant,

(111, 12)

(I11.13)

(111,14)

(11L.15)

We notice that the constants obtained thus far are
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valid over the entire optimal trajectory

By inspection of the Hamiltonian, we define the switching function

K=p; - wps (I11. 16)

Then, for the thrust magnitude control, to ma:_cimize H with respect to T:
if
K> 0, we selectt = ™M (boosting phase)

(T IR £ 7Y AT N S A D

K< 0, we select T = 0 (coasting phase) a11.17)

K = 0, for a finite time interval,

For the 1lift control, considered as function of A, H reaches a maximum
cither at

{

; we select v = variable (sustaining phase}
|

i

!

gt WRATRIR N ) SO Lt T R

N = Ay (111, 18)

or at an interior point given by ﬂiz = 0, Explicitly, we have
N

1, i) B S LM P g S Ak e A
T R o AL BIINIAER P R PSP ooy SPLIEN A COR Lt 2 P e L e

NN W =a-—2"1;;3 (I11.19)

Hence, if the maximum lift coefficient is used, we have for the bank, the

maximum possible bank angle for horizontal flight

W
coso = -):—-'a-z- 111,20)

M

In the case where variable lift coefficient is used, the bank angle is given by

tanc -'3% @121

We shall refer to the interior lift and bank as the normal lift and normal

i e tatan vt 2 A 18 L Mo 0 et 2T R el ent i A2 ST
i o et

bank controls. The other optimal possivilities will be referred to as the

maximum lift and the maximum bank controls. We shall assume that there

are no wavering maneuvers, the heading being continuously increasing along

a turning flight, and hence ¢ > 0., This in turn implies that p; and p, are
of the same sign.
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We shall analyze separately each of the three types of optim .arcs
1II-2-1 Coasting Arc

skt S

Let

A = NKTETWE

¥

(111, 22)

A =a,cosp +a,sinp

Along a coasting arc, T = 0, and we write the Hamiltonian

23,2 :
ua =1+ JETAIUR AP (111, 23)
The 1ift control is either

cmaa};m;v_«u.x..awmmrm.mmmmsm,m

= = Pel
N xM or A 21Ds 111.24)

We first consider the cagse where \ =\

M" The equations of motion, with u
as the new independent variable are

ko
:
fi
3 ' w = constant 3
A :‘%
dx _ _ ol cos B 3
du Ny u :
, dy . __w__ sinp
3 _ du - mArgy) w (1. 25)
- : - 3
: ! QE ) 'JXZMU Wz :
: - - 2 3 H
; du nl+Ay,) u i
@t w
u n(1+xM)u'
; :
E The boundary conditions at the ends of the coasting arc are E
t=te, u=U, X=X, Y = Yo, P =Bo, W=Wo .
(11, 26)
g t=te=u,Xx=%,Y=Y, B =B, W=w
? By integrating the last equation (lII.25) we have for the velocity
3 W, 1 )
( ——L’-—m+)\M)(u-uo)-t"t0 {111, 27)

The change in the velocity from the initial point is obtained by replacing
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ueand t by u, and t;, in this equation,

The variation in the heading is given by

hMuo +\AE u'° ;2 'J)\zMuz - woz

2n@+Ny) (B~ Bo) =M log - 2+~/)T'ﬁ"_—7 u

(I11.28)

The change in heading is cbtained by replacing p and u by 8, and u, in this
equation.

For the trajectory, it is simpler to use the arc length. By the trans-

formation
dx = cos Bds
(111, 29)
dy = sin pds
we have
= - W du
ds A )‘M) a (III. 30)
Upon integrating
-Gy = ——No_ _ L]
8- Sp A log 3 (1.31)

where s - go is the arc length travelled since the initial time.
Next we consider the case of normal lift control. By eliminating p,
between (III.23) and the second equation (III.24) we have
=1 - ..._Ei_ 2. 4 2
wA =1 YT [A%2- (u* + wd) (111, 32)
The state equations along a coasting arc become
w = constant

dx _ wu’ cos B
du  n[AT+ (¥F wo)]

O L85 Eas e i
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dy _ _ wu’ sin g
du A2 + (ut+ w)) (L. 33)
dg - . ul
du n[A% + (ut+ w?)]
dt _ wu?

du T AT F (0t F wo)

Since py is given in terms of x and y by (I1I1.15), Eq. (III.32) can be solved
for A in terms of the state variables x,y,u and p. Subsequently the first
three equetions (III, 33) can be integrated numerically, By satisfying the
terminal conditions at the ends of the coasting arc one can deduce the values
of the constants a, ,a, and a; and the three new constants of integrations b, ,

b, and by arising from the integration. The minimum time of flight is ob-
tained by integrating the last equation (III, 33).

Hence, for a pure coasting flight, when the final states x,y,u and g
are all constrained, the optimal flight is at variable angle of attack. On the

other hand, when these values are free, the flight is effected at maximum
angle of attack.

We notice that if the optimal trajectory also includes other types of

arcs, then the constants of integration a, ,a, and a; remain the same
throughout the entire trajectory, while the constants of integration b, , b,
and by are functions of the values of the state variables at the ends of the

coasting arc. Their determination will specify the switching point joining
a coasting arc and a thrusting arc,

11-2-2 SusminingArc

Along a sustaining arc, K = 0, and we have
Ps -~ Wps =0 (111. 34)
Consequently, relation (IIl,23) is also valid along this type of arc.

We first consider the case where this arc is flown with maximum 1lift.
Consider, in general
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Along a coasting arc, T = 0, and a sustaining arc, K = 0, we have

d(w +\)u? Al
(dtpj) - _na 2 ) by + 2 p, (11, 35)
On the other hand, fro.a the adjoint equations (I1I.11)
44 o2
dpy . _ p . 200+N)  Nuttwd)
gt TTATT T e TR p iz, 26)

By taking the derivative of (III. 34) and using (III,35) and (IIl, 36) we have

+A\Hu + 2 Aut u+1) +w?
p-MIMNERE,  MulATW, (1. 37)

By eliminating p; between (III,23) and (III.37), and putting A\ = kM,
a relation among the state variables along a sustaining arc flown at maxi-

we have

mum lift
uwA[(u+2) -u(u+)A] = (a,y- ax+ag)[A® - wi(u +2)] (1. 38)

Upon taking the derivative of this equation, using the state equations for
simplification we can express the variable thrust magnitude conirol in
terms of the state variables, Explicit expressions for the thrust profile in

some special cases of interest will be presented in the next secticn,

For the case where the sustaining arc is flown with variable lift co-
efficient, we use the second relation (II1,24) to rewrite (III.23) and (IIl. 37)
we have

F PN S
o1 et

and

4 _ 2
A= R [GIR0 SW) 4 (111 40)

The relation among the state variables along a sastaining arc using variable

lift is obtained by eliminating the lift control A between these two egquations.
We have for the varizble lift control
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2 . ¥2)(u! - wh - ufut(u+l) - @+3)wijA
A 7 - WAl (111.41)

or explicitly

2 2[(u* - w?) - u(u® - 2w?A]
AN =1+ T 0 - wA] (111, 42)

On the other hand we have, by eliminating A® between (II1.39) and (II1. 40;

4 2
_ Pafu? - (u+yw?]
A u‘wil+ 1-u)A (1. 43)
From the equations (111.41) and (1II.43) we have the relation among the state
variables along a sustaining arc, using variable lift control.

p2[ut - W+ )W) = w1+ @- wAH(u+2)(u* - w?) -ufut(u+1)- (w+3)w'JA}

(1. 44)
The variable thrust magnitude control will appear upon taking the derivative
of this equation.

III-2-3 Boosting Arc

An explicit formula for the normal lift along a boosting arc in terms of
the state variables only is not known analytically. For the case where the

boost.ng arc is flown with maximum lift coefficient, we have the equation

%—: = -—:r-(l-auz) (111, 45)
where a is a constant
1+22
a=— M (111.46)
M

By integrating we have the relation between the mass and the velocity along
a boosting arc flown at maximum lift

1
PNCY
w(—i—%% =C (IIL, 47)

where C is a constant, When M < 20, wewriteb = 1/2A/a and con-
gider
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Hence, if impulsive thrust is permitted, we have, along an impulsive-thrust
arc '

‘ we = C - (I11. 48)

AN

R Sk e

111,3. Solutions for socme Special Cases

We have shown in the preceding section that for the general case, the

optimal controls can be expressed explicitly in terms of the state variables

and a certain number of constants of integration. In other words, the set of

b6 e e bl

adjoint equations, except for the case of maximum thrust with variable lift
coefficient, can be integrated completely, Thus the variational problem is

reduced to a multi-point boundary-value problem. Because of the non-

linearity of the state equations, the actual optimal trajeci:ory can be obtained
only by using numerical integration.

AN L T v iR

Dt e

In this section we shall relax some final conditions on the state variables
in order to get deeper into the problem analytically. In particular we are

able to obtain the thrust profile along a sustaining arc in these cases. This

T I LRC ATy

result, coupled with the numerical investigation in the next chapter will

PR

< a-h

allow us to formulate constructive suggestions for the design of TMC rock-
ets,

LA s DS S Ll -l S he helal LS

AT kb

III-3-1 Rectilinear Flight
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This problem has been analyzed numeurically in Ref.4, for a very

LA | L

special type of rocket. In this section we shall give the general analytical
solution to the problem for a general type of lifting rocket.

For this casey =0, p =0, ¢ = 0, and the lift coefficient is always

\ = .l";vz = Ay (I111. 49)
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The lift coefficient is no longer an independent control, and we should
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tude as the unique control,
For the state equations we have

a _,
dt

du _np
' dt w[.r

(111, 50)
gw _ ___
dt n

dt
at

' Using the same subscript order for the adjoint variables as associated with

the full set of state variables, we have for the Hamiltonian

3 4
H=-1+pu- Il-‘-‘i;,%“—’p, +%}(p3 - Wps) . 51)

L0 " 1

The adjoint equations, in this case, are

dp; .

at 0

dps _ 2n(ut - w?

gt - Pt g Ps (1. 52)

Sps g A w)
dt w u P

The switching function is always

Chaiv A acababiadtoat s Db A O

Z K =p; - wps {111, 53)

f As before, we have the integrals of motion

) P =8, {I1L. 54)

4 and

A

3 H=0 {111, 55)

4 This gives the relation

W) - 1vaut D - wpy) (I11. 56)
wae P 1 el Ps .

rewrite the two sets of state, and adjuint equations using the thrust magni-
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which, for the cases of coasting flight, and sustaining flight, is reduced to

.ﬂ‘_"’;*“ p; = -1+a;u

g (11, 57}
Next, we consider
R
d(w ps) . M7 (Pa Wps) - n(u w! (11, 58)
For coasting and for sustaining ilight, we have
Cdwps) _ _ @t - w)
) Tt oz Ps {II1. 59)
We consider succesively the following three types of optimal arc,
Coasting Arc
We have, T = 0, and hence
w = constant (111, 60)

The adjoint variable p, is obtzined in terms of u from (I11,57). For ps, we
rewrite (Il1, 58)

dpa . AL, - (“w'(f oy L 61)
The equation for u, witht =0is

& .. "““;u*‘”a’ (1L, 62)
Hence

& - ou. ¢

Since w is constant, ps; is obtained by quadrature and the system of adjoint
equations is completely integrable,

The velocity is obtained by integrating (iIl, 62) from the initial point
of the coasting arc. We have

Moy = L w-ANZwu+w, 1 NZW u 64
W( to) Mbgu‘+~/2'?u+w MArctan-———T (11, 64)
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-For the range, using u as variable, we have

dx _ wu’
du 11(uz + wz)
Upcn integrating
A0 = log BTV (I1L, 65)
w ut tw ’

Sustaining Arc

Along a sustaining arc, K = 0 and we have
P -wps =0 (II1. 66)

By taking the derivative of this equation, and using (III. 59) and the second
of the Eqs (IIl. 52) we have

ay = LTI - W), (L 67)
By eiiminating ps between (III, 57) and (IIl. 67) we have the relation between
the nondimensional weight and the nondimensional velocity along a sustain-
ing arc,

ot + ) -wru+3)) _ 1
(u+2)u* - w°) T a, (111. 68)

In Fig. 1.2, we have plotted the trajectories for sustaining flight, in the

(w,u) space, using a = 1/a, as parameter, Explicitly, we have the equation
of the curves witha <0

n¢ + - -2
W = 2“'/32 - 2_33_22 11 69)

The family of curves is bounded by two limiting curves, When -a = « we
have the parabola

(111, 69a)

- 2 u+l
W= U ’u+3 (111, 69b)

This limiting curve corresponds w the singular curve obtained in Ref.5, for

When a = 0, we have
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the problem of maximizing the range.

To have the thrust profile along a susteining arc, we take the time
derivative of (III, 69) using the appropriate relations for du/dt and dw/dt.
Upon simplification we have

2u?[u+ (2 - a)u- 2a]
[u® + (3 -a)u-2a]

X (111.70)

a4

f2u* + (9 - 4a)u® +2(a® - 8a +3)u’ - 2a(7 - 4aju + 8a?]
fW+2(3 -a)u® +@° - 12a+12)u® +6(a® - 4a+1)u* +2a(6a - 7)u+8a’]

In Fig.III.3, we have plotted the thrust magnitude nf sustaining flight as a func-

tion of the velocity, using "a" as the parameter. The family of curves is

bounded by two iimiting curves, When a -~ we have &
r el ”
- 2u .
TEs (1I1,701)

When a -~ 0, we have

_ 2u? (u+2)@Ru? ¥9u+6)
(u+3)(uw’ +6u° +12u+6)

(111, 70b)

From Fig.lll.2, it is seen that, along a sustaining arc, as w decreases,
the velocity decreases. From Fig.Ill.3, we see that the variable thrust is
also decreasing along a sustaining arc., The level of the thrust is high for
large velocity, and remains at lower level for small velocity. In particu-
lar, for the range of velocity studied in Ref,4, between M = 0.3 and M =

2.5, one easily verifies in our plot for the thrust profile that T remains

small and is slowly decreasing. It has been found numerically in Ref.4

TR

that the thrust magnitude along a sustaining arc is nearly constant and re-

Fnathl b Sy

mains small,

LS A

We notice that the exact solution for our thrust profile applies to a
general type of missile, By the definition (III.5) of v, we see that the real
thrust is proportional to (pSc? CDo)' Hence our formula (III, 70) gives ex-
plicitly the variable thrust profile in terms of the altitude (through p), the

flight velocity V, and the missile characteristics S and cDo'.
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Using the expression (IiI.70) for the variable thrust, we have the equa-

tion for the distance travelled along a sustaining arc

2 (u+2)ND+2u(u?+2a)
- - = .71
dnbx - xo) NND [u? + (2 -a)u-2a] { )
lle
where
N=u®+ (-3a)u-2a
D=u®+ (3-a)u-2a l.72)

It is known that the integral in Eq., (III.7 1) can be expressed in terms of
elliptic functions., The time is finally obtained from

u
~dn(t-ty) = 2 (u+2)ND +2u(u? + 2a)
4n(t- to) S‘ u NND [u? + 2 - a)u - 2a] 111,.73)
Up :

Hence, the equations along a sustaining arc are completely integrable.

Boosting Arc

Along a boosting arc, where v = ™M the variation in the nondimen-

sional weight is simply

W-Wo = ""ITM(t' to) {11, 74)

In the (w,u) space, the trajectory for boosting arc is obtained by inte-
grating the equation

St P

: du _ 1 (wé + u®) .

3 dw w[l- TM—ur— {iL.73)

F Although an unalytical solution to this equation is not known, it is seen §
» that for M ® the limiting curve is ?
i 3
iU %
- we' = C @ ;

where C is a constant of integration.

Optimal Trajector*

SA PPN

The problern of minimum time between two given end points in the
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(w,u,x) space is hence obtained by joining the different types of optimal arcs.

Let B = Boosting arc, C = Coasting arc and 5 = Sustaining arc, Follow-
ing the same type of discussion as in Ref. 6, we see that there are six pos-

sible types of optimal trajectory, namely (Fig.lll.4)

BC CB
BSC and CSB
BSB CsC

Although the actual computation involves numerical solution, it-is possible

to have the following general properties which facilitate the computation
(Fig,III, 5). '

Proposition 1
LetX = (w,u,x).

If io and :"(f are both specified, then in general the optimal trajectory in-
volves all three types of arc.

Proposition 2

If Wo > ug

the initial arc is a boosting arc

+
If wy< ug,’%:—_’_s

the initial arc is a coasting arc.

Proposition 3

2
If wf> uf

the final arc is a coasting arc.

the final arc is a boosting are,

111-3-2 Turning Flight with Free knd-point

As in the case for rectilinear flight, the turning flight problem re-
duces to a problem cohtainmg one single parameter if we do not specify the
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end position X, and g

In this case, from the general results obtained in Section III-2 we
have '

a, =0, a; =0 (111.77)
and hence

Ps = a4 = constant . (111.78)
The controls involved are the lift (and hence the bank angle) and the thrust

magnitude, For the optimal lift, we have either

A= )‘M (111, 79)

or

NKZOT - wE = AT (111, 80)
2npy
We shall consider the case of maximum lift and next, the case of variable
lift,

Maximum Lift Program

The 1lift is given by (III, 79), and nence, we have for the bank angle

cos o ‘T!E? -(IH.81)
M

The optimal arc is of three types.

Coasting Arc

The general solution in gection III-2 is valid and we have the following
results starting from the initial point wy, 1y, o, So.

W = Wp
2
Wg u Ug
. o XMué +N‘)\5Mu§ - wo"’ N’Xhuz- w§ VXMug- wg
2n(d+X - =) + -

XN Pol =P l08 © R W s T8
.82
n@+r3) oL

VR0

Vil ¥,

Y e TETL T g2
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Sustaining Arc

With A =0, and A = )‘M’ equation (III. 38) giving the relation between

w and u along a sustaining arc becomes (a, < 0)

' r
A out - whiu + 3) 4
M =L (111.83)
u(u + Z)\a\mhtzl\/[uz - w2 a4 )
Explicitly, in terms of u and of the para'meter b =-1/a,, we have

w et [[Elt3) DFudut2F]+bufu+2)Nlut 2R T DN ¥ 2)] ?
: M 2{(u+3)* + bZuz(u + 2)2 ' 3
..: aII° 84) 2
Fig.III. 6 plots the family of sustaining trajectories in the ((w/xM), u) space, 4
9 using b as parameter. The curves are bounded by the limiting curves. i
V For b~ «, we have :
] 3
3 W = kgl (111, 84a) 1
i For b—+ 0, we have §
; A uZ i:
: ws—2_ (111, 84b) -
f : The variable thrust along a sustaining arc is obtained by taking the deriva- j
; tive of the singular equation (III. 83). We have, after simplification, ;
T = (1+xZM)uZ[3 (u+4) +2b%u?(u+2)j[2 (u+ 3} +b*uP(u+2) - bu Nu+ 2)[dF bruc(u+2)] }/ é
1 :
? [2 (u+3)@u?+9u+12) + bPu¥(u+2)(® + 10u? + 24u + 24) + bruku + 2 (u® +2u+2) 5
4 1 ;..
: -buf(u® + 6u®+12u+12)+ b*n’m +2)(u* +2u+2)]N (U 2)[4 Fb?Z(u + 2] ] (L. 85) g
i Fig, 111.7 plots the thrust profile v/ ‘“"fu’ as function of the nondimension- %
;
é al velocity u, using b as parameter. The family of curves is bounded by ;
g two limiting curves. :
: *.
Z‘ For b=+ «, we have
4 :
. T _2u? E
;ﬁ A+x¢)  @+2) (111, 85a) ‘
4 . 3
; For b~ 9, we hoave "
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32 ;
T _ 3uf(u+4) :
aH‘ZM) B Fou+ ) (111, 85b) é
Once the thrust is known, the variation in the heading, and the time »f flight %
along a sustaining arc are obtained by quadratures. We observe that, along i
a sustaining arc, both the velocity and the variable thrust level are decreas- %
ing. E
4 1
3 Boosting Arc 3
* When \ = )‘M’ the variation of the mass in termsg of the velocity is ';
given by Eq. (III.47) written in terms of the initial conditions at the start §
3 of the boosting arc as 1
- 1 1 2
é !v w(’——-—-——.}‘"]t;u}z",; = w 1+d§-lh 2 a=1+)\M (III 86) ?j
= 1-Nau °\1-Na up ’ TM ' i
5 The variation of w as function of time is simply »;
W - Wo = -mmy (t - to) (111. 87)
From these we have u as function of t. For the change in the heading, we 2
{ write g
3 o T Wl
ap 'Ji-Mu W
L NS = (111 .88) 3
: du  ufry - (1+N)u2]
w? is obtained from (III. 86) and subsequently we have B in terms of u by *
4 quadrature. 3
_ Normal Lift Program . ;
The variable 1ift is given by (III. 80). The optimal arc using a variable §
lift coefficient is of three types.
' Coasting Arc
f *
5 Since A = 0, p, = a, we rewrite the Eqs. (I11.22) - (I11.24)
A= NaT w2
na+¥)u’p,  af
+ - =
E ! - il (i11. 89)
3 - 84u
A Znn
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By eliminating p, among the equations, we have the equation for A,
a,A* - 2uwA - a, (ut + w?) = 0 (111. 90)

Solving for this equation, we have explicitly for the lift coefficient

2w u? 2w
? 2 _ YT ET YA T
3 =1+ - 1+-—za4 x PP NutwZ+al (uf+w?) (111.91)

For the bank angle we have (a, f 0)

:-1_ 2 2 _1_1_‘_
tano = - [ui\/u +al(l+ ) ] (1. 92)

Since w is a constant along a coasting arc, we can plot, for different values
of w, the lift coefficient A, and the bank angle o, in terms of the flight ve-

locity u, using ay as parameter, For a given missile, w can be taken as the

initial weight or the final weight. To have the plots valid for a general type

el ety S
Vs L el g Lo 2005 FUOAH QLT S Minbe IR Y s St AT et o e St s Lt B e Rt '

of missile, it is convenient to include the constant a, in the variables. Let

U = -il_ W = ;w-
u = a‘ F] w ai (In093)

ArEAS AR i |

URFTRCR: TERT

Then we have the equation for A .

i &

—z Sp—
Z =1+ B+ 2 VT T T W . (IL.94)

with the condition

Yoy ot e Ao eh o 3508 21 LG 2D

s # v+ —

S\ =N (11, 95)

L e | i

We can have a general plot for the lift coefficient, in terms of the velocity

using W as parameter,

Similarly, using U and W we have for the bank angle along a coasting

arc using variable lift coefficient

tanc='ﬁi,fl+'ﬁz+%z (1L, 96)

Since W is constant, we see from this formula that when U -* 0 ¢ = 45° and

et 4 O 5 W R A1 Dt r ot L5t d A5t b

T R DT T T Yy ™y r

ot AT,

when U ~w«, 0~ 90°. Since U is decreasing along a coasting arc, the bank !
angle for normel lift is also decreasing. By Eq. (III.81) we see that the
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bank angle is also decreasing along a coasting arc when maximum 1lift co-
efficient is used. The analytical results obtained in this chapter are in
agreement with the results from an independent numerical analysis carried

out in Chapter IV,

Susgtaining Arc

For a finite time interval of flight along a sustaining arc, we have

Py - Wps =0 1. 9?)
The 1ift coefficient is given by (III. 42) with A = 0, We have

: A2 =1+ B’g— @t - w @11. 98)

On the other hand, from Eq. III. 44, by putting A = 0, p; =a,, we have the

relation between the weight and the velocity along a sustaining arc using
variable lift

wwiu+2)u* - wd) _
[u* - +)w9® % (1. 99)

Explicitly, using a = af as parameter, we have

w = u? J [ud(u+2)+2a(u+l))+utNu+2)uiu+2)+4al
2[ud(u+2) + a(u+1)2)

(I1I.100)

Fig III. 8 plots the family of sustaining arc in the (w,u) space. The curves

are bounded by two limiting curves.

For a =+ 0, we have the parabola

w = u? {111.100a)
For a -+ «, we have the curve
u (111.100b)
w= . 100
l\lu + i

Using (III. 100) we can express the variable lift control in terms of u, and
the constant a as

\E =14 u(u+ 2)+§a(u+l) - u&l(u-fZ)[uz(u+ZL+4a1 11 101)
[W@+2)+a@m+1)*]
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Foru -0, A\~ N3, Foru-oo, \ - 1, Hence, we see that, when variable
lift is used along a sustaining arc

1<A<NF
The family of lift curves is bounded by two limiting curves, Whena —~ 0,

(111, 102)

Eq. (I11.101) becomes

=1 (I11. 10la)

When a =~ 0, we have the limiting curve
. [EE3 : '
A= orar (111.101b)

For the bank angle, we have in general
tan’s = -‘%303 ut - wd) (I11.103)

Using (III, 98) we have
_ (u+2)  ut

tan’c = === (=3 - 1 (111.104)

Another expression for tans can be obtained by noticing that Eq, (III.90) is
also valid for sustaining flight, and that A = w tane. Hence we can write
the equation for tanc witha, #0

-4
mnzc--z-“ltanw a+Ey-0 (1. 105)

Combining the last two equations we have

4
tanc = %g[% - u+1) (111, 106)

For ¢ to have positive value, we notice that a, < 0, when w> u?®/Nu+1.
By eliminating w? between the two equations (I1I.104) and (III, 106) we have

the equation for tanc.
tan®e - Ei%ymnc- (u+2) =0 (I11.107)
¢

Since a4, < 0, we take the positive root

ine = -[u+2) -NEF @I T4l ) (L108)

Fig. III.9 plots the variation of the bank angle along a sustaining arc

in terms of the nondimensional velocity, using a, as parameter.
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When u-* 0, tan ¢ = N2 and ¢ —~ 54°44',
" When u=w ¢ - 90° or 0° depending on the sign of a,.

The family of curves is bounded by the limiting curve obtained when -a, =~ o,
We have |

taneo = Nu+ 2 (111, 108a)

The variable thrust profile is ottained by taking the derivative of the Eq.

(I1. 99), using the appropriate relations for du/dt and dw/dt. After some
algebraic manipulation, we have

T = 2uf(u+1)D- N w[Ru+5)N-D]+a@Bu+4)[u+)N-LC]

D wf2uz+6u+5)N - (u+1pD]+a(2u2+ 5u+4){(u+1)N - D]
(I11. 109)
where
N = [u’(u+2)+2a(u+1)]+u? Nu+2)[u¥(u+2)+4a)
. (111, 110)
D = 2[u’(u+2) + a(u+t1f]

Fig, 111.10 plots the variation of the variable dimensionless thrust v in

terms of the dimensionless velocity u, using a as parameter. The family of
curves is bounded by two limiting curves.

Whena =0 a
TTu+e2 (I11.109a)
Whena = «
' _ 2u¥m+2)3u+4)
T® Wt)REu +5ur4) (111, 109b)

It is seen that T is increasing with u. Hence, since along a sustaining arc,
the velocity is decreasing, the variable thrust is decreasing along that arc.

Also we notice that along the sustaining arc, for small velocity the variable
thrust magnitude remains at relatively low level.

Boosting Arc

For variable lift control, no analytical solution can be found for

the boosting arc, but it is seen that in the (w, u) space the trajectory tends to

the exponential curve (11l. 48) when ™ T ®
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Optimal Trajectory

As for the case of rectilinear flight, the optimal trajectory is of

the six types
BC . CB
BSC and  CSB
BSB csc

The optimal trajectory is obtained by Joining different types of subarcs such
that the end conditions are satisfied,

3
ki
t>
2
b1
H
)
;
o
3
,3
.3
2
4
b
3
3
i
:
JA

To facilitate the computational Program, we may use the following i
criteria (Fig.II1.11).
;
Proposition 1 {
When maximum lift is used
: If Wo > A, ul
4 1 ° MYe ;
e
L The initial arc is a boosting arc,
; A U2 ;
: . If wy < m—
the initial arc is a coasting arc.
When normal 1lift is used
2 i
If  we> ul
; the initial arc is a boosting arc,
3 2
W < ity
, ; the initial arc is a coasting arc, e
1 ! Proposition 2 !
) ! When maximum lift is used
: ! If > A, ul
; | Ve AmYs
the final arc is a coasting arc. |
2
A

u
Mt
If wf<m-

R e
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the final arc is a boosting arc. f
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Fig.,lII,3 Variable Thrust Profile for Rectilinear Sustaining Flight
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Fig.lll,7 Variable Thrust Profile Along Sustaining Arc for Turiing
at Maximum Lift
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IV, NUMERICAL RESULTS

In this chapter a discussion of the computer program used to compute

solutions te fully constrained problems will be presented along with simula-
tion resuits for representative cases.

I1V,.1. Basgic Optimization Problem

The equations of motion for flight in a horizo:ital plane are given by

Eqs. (III.1) and (II1.2), To facilitate the discussion of this section, the

state variables (i.e., x,y,v,p,m) will be denoted by x,,...,% " where

n =5 for this problem, and the controls 7,0, CLwillbe dencted by u,, u,, us, re-

spectively. The computer program is developed in the (x, u)-system.

The problems considered in this study are Mayer type optimal con-

trol problems, and the computer program was developed for the following
Mayer problem.

MINIMIZE: 7= ¢t %) av.n
SUBJECT TO: % = £(t,x;u;,uz,Us) av.2)
X(to) = %o av.3)
< <
u SCp @v.s)
max
G(x,uz,u;3) =0 dv.é6)

Equation (V.1) is the performance index which contains the quantity to be

optirnized (e.g., tf for minimum time problems) and penalty terms ior the

terminal boundary conditions. Equations (IV.2), {IV.4) and (IV,5), and
(1V.6) correspond to Equations {1I1.1), (IIl1.3), and (III.2), respectively.
The control equality constraint (IV.6) can bz used to elimninate either u, or

u; from the problein., Since the main purpose of the progrem is to verify

and extend the results of Chapters II and III, CL is eliminated, i.e,,
Gix,uz,u3) =0 = u = gx,uz}, av.?7)

or, in physical variables-
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= s = _—_—z-.x-n-g—-—-
Lcosoc =mg = CL SVZScos s (IV. §)

We now have the following problem:: Minimize Eq. (IV.1) subject to

X(ty) = xo and:
X = fit,x,uy,u,) E?[t,x,u,,uz,g(x,uz)] (Iv.9)
< <
0=y, = Tmax (Iv.10)
glx,up) = CL . av.1}
max

IV.2. Solution by Gradient-Type Methods

The first step in the development of a function space gradient-type

method for optimal control problems is the definition of the following aug-
mented functional:

te
T = dlte.x) + yxT(t)[f(t,x,ul,uz)-i]dt av.12)
d .

where A (t) is a vectior of influence functions which in the limit (of the numer-

ical algorithm) approaches the p(t}-vector of Chapter III,

1t is convenient to define a Hamiltonian function
H(t,x,\,u) =\ £(t,x,u). av.13)

Let u(o)(t) S (u,(o)(t), u(:)(t)) be an estimated control vector which satisfies
Inequalities (IV.10) and (IV.1:), and let tf(o) be an estimate of the final time .

One can then integrate Eqs. (IV.9) forward to define a corresponding tra-
jectory x(o)

J[u (o)].

(v), defined on [to,ti(.o)], and a value £or the performance index,

Let x(°)(t) be an arbitrary continuous vector which we shall character-
ize later. To develop the gradient-class of numerical algorithms, expand

Eq. (1V.12) to first-ovrder about the pair (x(o)(t) ,um{t)) with the following defi-
nitions

ubky
xm(t)

a®ly) + sug) IvV.14)

]

<N + sx) av.15)

11
2
[ PRPRTFE ST




bR MUAALE DA e { S Sl

M .0
t) =t +dt. . av.16)
ey = Ol + ax, av.17)

Then,

Sa®] = Tu®) + o ot + 6T ax,
f

f
+ [HE) - )\(°)'I;t(°)) 3@ (©)at
4-)f SR S §
0
T T
+ S[Hf:) 6x+H(:F6'J. ) 6x]dt . Iv.18)
to

Upon integration by parts of the third term in the integrand and rearrange-

ment of terms, the following equation expresses the difference in cost be-

tween the base trajectory and the first iterate (to first-order):

adfeu] = 3l - 5 = @ 410 g+ @ o &t
£ te S
I
£ .
+ (10 + 3O o+ 1) Tougae av.19)
to
where
6x((:.)) = dx, - 5:‘°)(t(f°))dtf av.20)

has been used to eliminate 6x(t(:)) from Eq, (IV.19).

We now characterize x‘°

AJ £ 0) is defined,

)(t) so that a stable iterative algorithm (i.e.,

SPECIFY: Oy - ¢§:; av.z1
O = - it x%, ), O . av.22)
Then, o
Al = ¢‘t°f) + H(o)l(o)dtf + Sng) sudt, (IV.23)
t

or,
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o

f T :
AJ = S‘{ [ (¢(t°f) + H(°))/(t(f°) - tolldt, + I_if‘l’) Su}dt. (iv.24)
to

Note that if the following choices are made:

at, =t - ¢ - -e[(¢‘t°f’ + B - ) v.25)

sutt) = ) - O = -eH(;)(t) (subject to constraints)
(IV. 26)
with € >0 (small), then AJ £0. These choices repr=sent the gradient

method choices.

In the computer program developed here, the conjugate gradient
method [Refs 7,8] was employed. It can be shown that this method also
guarantees AJ = 0. We shall now present the algorithm in two parts; first,
the algorithm with no control inequality constraints will be listed, and sec-
ond, the modifications necessary to handle the control inequality constraints
will be listed

UNCONSTRAINED CONJUGATE GRADIENT ALGORITHM

1.) Guess u‘o)(t), t(;.,).

2.) Compute: xt), \Dgy, Hg)(t)

@
[tng)THﬁ)dt
pPy = Hg)(t) + t:(H) — p T av.27)
fal ) g,
to
P = 5
Ny
3.) Check ffnl‘,I)THg’ dtSe. If yes, stop. Ifno, go to 4).
4.} Perfor::; one-dimensgional (1-D) search to determine the value ay which
minimizes
3® - Ipa)]. V. 28)
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+
5.) Define u‘I b ua) - alpm, setl1=1+1, Returnto 2.)

Equation (IV.27) defines the conjugate gradient search direction, Dis-
cussions of this method are given in Refs [7,8].

MODIFICATION FOR. 02 u; =T
max

Let W,m be the set of points at which u,m (t) is on the boundary,' i.e.,

w0 = {tjut) = 00r T .} @v.29)

Replace the u; -part of the inner products in Eq. (IV,.27) by
u, Hy, 9% (IV.30)

i.e., in the evaluation of the inner product associated with Hg) (t) do not
1
include boundary subarcs.

+
The set W,a b is formed during the 1-D search. The implementation

is as follows. Let @ be a candidate search parameter:

iru®e - 300> T . .Set 7T ) - T ax

av.31)
fu®@ -3pP< 0 |, stV = 0.

i

After the function evaluations for the 1-D search are computed, a value @

is obtained by a cubic interpolation process. The set WfIﬂ) is then defined

as the set of all t which cause the inequalities in Eq. (IV.31) with « 5 Fe”
placing @.

MODIFICATION FOR g(x,u;) £ C

Lmax

As noted in Chapter III the constraint on bank angle is a function of

state variables, Thus, this control constraint is treated in a manner

slightly different than the thrust, u,. Let w‘}) be the set of points at which

g(xa) ), uza ) t)) = CLmax In the computer program the control vector is

stored at each integration step, and linear interpolation is used to define
the control between the fixed step-lengths. As with W,(I +1), Wzaﬂ) is deter-

mined in the 1-D search, However, in the forward integratién for the

e e
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function evaluation for a specified search parameter, %, the control con-
straint relation is changing because x appears in g(x,u;) = CLmax' Thus,
when the integrator is at ti’ the constraint at ti + At is predicted by

glx(t)+ i((ti) At, ug (t, + at) = CLpax * Iv.32)

If the integration stepsize is sufficiently small, this approximation is suf-
ficient to approximate the control constraint at ti + At. Except for this
modification, the set W(zlﬂ) is determined in the same way that Wfl ) is
determined. o

1V.3, Deck Description

The program is developed based on the conjugate-gradient algorithm.

A RungeKutta fourth order integration scheme is used to perform both for-

' ward and backward integration. A switch is imposed such that it can be set

to the gradient algorithm.
The program is designed to minimize a weighted performance index

which includes the following effects.

1, Total flight time tf .
2. Terminal states X, Yes Ve B £ and m,.

The performance index is
J = ctptpilx-x)7+ pay ~3p "+ Ps (V- VP +py(p - By)? +ps(m - my)?

9 subroutines are used to handle this problem:

MAIN AERODN
FWDINT. DEllIV 1
|

COSTFN

XLAlMFN
BAKINT I DERIV 2
GRADFN AEll.ODN

SEKALF

a2 dabis AN KAWL it b 2 227 D oo S ST
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MAIN: Reads in all necessary data, initial and terminal values, controls

E- the application of the conjugate gradient élgorithm, calls the forward and

3 backward integration routines, directs the one dimensional search, updates
the control vector and terminal time and prints out a message concerning the

results of the iteration and prints out the control profiles obtained by that
iteration.

YT

A. J = An integer which indicates where the data is located.
B. Namelist input data

TR,

G = gravitational constant

L=l b Sl )

T

RHO = atmospheric density
CDO = zero-lift drag coefficient (CDo )
CE = exhaust velocity

RIS b Ut 7 eeia? o et SIAAR L

DK = induced-drag coefficient (k)

3 AREA = aerodynamic reference area
DELTS = integration stepsize

CLA = slope of the lift curve (CLO,) '

ORI

ITMAX = limit on number of conjugate gradient iterations
ITMX = limit on steps in 1-D search
KOUNTM = limit on iterations for weight cutoff

IKEY = number of iterations to reset the search direction

AT T AT

. * e . 2w : [, s g Y
e 1 £ AL A B L L NN S e A SIS i a5 S AR A A S S R e Y

CSTR = estimate of final cost, initial guess of parameter o for one- i
dimensional search
PFUN(5) = penalty coefficient vector
CCOST (1) = coefficient in cost functional
B = not used
= Index for output device
E JERK = switch for scheme option : ; g:fﬁgz :e mg:&?)i;nt method
DTFM = maximum allowable final time change
XDTFM = fraction of DTFM used to start 1-D search

XO = initial position in x-direction

PR T TT SV I DI R AT 3 |7 - R CCE R RPEEL RV, IO TR PLIGPNPE N T PN

YO = initial position in y-direction l
UO = initial velocity Fe

= 2 L ey
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BO = initial heading 3

WO = initial mass 3

TO = initial time ]
XF = final position in x-direction ‘f{
3 YF = final position in y-direction i
a UF = final velocity %
] BF = final heading !
‘; WF = final mass ' :
; IOUT = print frequency for forward integration %
IOUT 2 = print frequency for backward integration 2
IPRNT1 =1 for initial run, = 2 for continuing run after normal termina- j
tion of conditional cutoff ]
; IPRNT 2 = not used i
; CBND(2,2) = control bound :

A

ERRMX = error tolerance for integration routine
ERRMN = not used

t st EACE R b o]

TIx

TCUT = upper time limit on trajectory

LR AL T

T

EPST = cutoff tolerance for norm of control change
EPSTF = not used

Ay

EPSA = cutoff tolerance for integration weight cutoff
EPSIT = cutoff tolerancz on gradient norm

Lk B AL VT L o A T O A O

ERR = cutoff tolerance for small cost change

Note: for any final state unspecified an arbitrary number other than zero
may be assigned.

o
N N M
PRSTUREN L T LU TS SULNS FELIE B g TR e

KT ST R TR

C. Control Vector Date

oy

IJKU = total number of control points
TF = initial guessed 1:f

b Av sl S st s

s BT b g

U(3,1JKU) = control vector and time point
D. Bounded Thrust Value '

NN = number of points with bounded thrust
TAUMAX(N) = maximum thrust limit at Nth point
TAUMIN(N) = minimum thrust limit at Nth point

.
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SEKALF': (One-dimensional search subroutine): Determines the parameter a
for the new control valne in the conjugate gradient algorithm, Fits a cubic %
in a to known values of J{0), 9J/8«, to obtain min J(e) and then a* for J min, "3
: 3
3 FWDINT: Subroutine performs the forward integration of the state variables §
. and calls the subroutines to evaluate the cost functional and final multiplier g
1 i
values, 3
] 3
S - ' 3
3 BAKINT: Subroutine performs the backward integration of the state variables . %
3 ! 2
and multiplier equations, calls on GRADFN to calculate the gradient and ' *?;
store the value at each iniegration step, determines the new search direction. J:
; DERIV1: Subrcutine calculates the time derivatives of the state variables . Ii
g &
4 DERIV2: Subroutine calculetes the time derivatives of the multipliers 4
{ AEFODN: Calculates aerodynamic parameters ;
3 XLAMFN: Calculates final multiplier values ;
3 COSTFN: Calculates cost functional ‘;
§ GRADFN: Calculates gradient values at each step. 2
1 IV.4. Representative Problems and Numerical Sclutions g
E Several minimum-time missions have been selected and solved by the ’
numerical programs. The migsile is assumed to have a parabolic drag k
?; polar .
8 - 2 Y4 :
; Cp = Cp M) + k@MCE, (v 33)
z In terms of the angle of attack, the lift coefficient is given by 4
Cy, = CLa(M)a (IV.34) :
where Cy, is the slope of the lift curve
8C; (M, a)
c, - (__._.._M >a=0 av.3s)
3 a
3 § The induced drag coefficient k(M) can be related to the aerocynam-
i
£ ic stability derivatives by observing that CD(M,a) can be expanded in Tay-
3 % lor's series as
3 ' 8C 8%C
E - -2 17D\
: Cp *Cp,M *( 5a ) z( ez )%t @v.36
] a=0 a=0
£
E F
&
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For a parabolic represen‘ation, as given by (IV.33), the coefficient of the
second term on the right hand side of Eq. (IV.36) is negligible and we have

Mc
KMICE = k@OCE, (M’ —(—-—1—)

Hence
CDaa(M) )
k(M) = m {IV.37)
where
a’cD
CDm (M) =< Y ) (1V.38)
a:O .
It is customary to write
ic, M) - eM)Cp @) av.s9)
aa a

where ¢ (M) is the aerodynamic efficiency with typical values bounded by

4 seM=1 V. 40)
Hence
k(M) = M) av.41)
CLa(M)

For a given Mach number, the maximum lift-to-drag ratio is given by

CLQ(M)

av.42)
«M)Cp,M)

-1 1
T 2kC. 2
Do
To verify the analytical solutions obtained in Chapter III, in the first part
of this numerical analysis, Part A, we.shall assume that the coefficients
Cp,s CL,: and k are constant, We shall indicate in Part B the neceesary

modification in the subprograms when these aerodynamics derivatives vary
as functions of the Mach number, '
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A, Constant Aerodynamic Derivatives

The following values are used in the numerical computations.

Initial weight, Wy, = 861 lbs

Final weight, Wf = 434 1bs

Maximum thrust, TM = 34,000 1lbs

Minimum thrust, Tmin = 0 lbs
Exhaust velocity, ¢ = 8,050 fi/sec

Reference area, S = 0. 66 ft

Air mass density at at 40,000 ft, p = 0,000585 slugs/ft
Zero lift drag coefficient, CD° =0,3

Lift curve slope, CL =10.3

o
Induced drag coefficient, k = 0,097

Maximum angle of attack, ay = 30°

Problem 1. Pure Coasting Flight

Initial Conditions Terminal Counditions
Xo =0 Xf = free
Yo =0 Yf = free
Bo =0 Bp = 45°
Vo = 2136,.2ft/sec ~ 2,2 Mach Vf Z 1000 ft/sec
W, =861 1lbs

Wf = 861 1bs

This case was considered to fest of the efficiency of the program. After 12

iterations we obtain tfmin = 10. 604 seconds with the final velocity being

Vi(tg) = 1525 ft/sec. As predicted by the analytical solution, tke flight is

effected at maximum angle-of-attack, and the maximum allowable bank

angle decreases

monotonically along the optimal trajectory.

Probhlem 2: Minimum time furning with high initial velocity

Initial Conditicns

X0 =0
Y°=0
Bo =0

Terminal Conditions
Xf = free
Yf = free

By = 135°
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Vo = 2136. 2 ft/sec V.2 1600 ft/sec

W =861 lbs Wf = 434 lbs

In this problem, a thrusting phase is involved, Since the constraining final
velocity is low the thrust prcfile is of the Boost-Coast type. The minimum
time obtained is tf = 9,49 seconds. The trajectory is flown with maximum
angle-of-attack,

Keeping the same final heading, if we increase the final constraining
velocity, there exists a critical final velocity such that the thrust profile
reverses to the Coast-Sustain-Boost type.

Problem 3: Minimum time turning with low initial velocity
Initial Conditions

Terminal Conditions

Xe =0 Xf = free

Yo =0 ' Y; = free

Bo =0 By =450

Vo = 1000 ft/sec Vf Z 1000 ft/sec
W, = 861 lbs W, = 434 lbs

After 40 iterations, we obtain tfmin = 8.133 seconds with the final velocity
being V(tg) = 5700 ft/sec. The optimal thrust profile is Boost-Coast with
the trajectory flown at maximum angle-of-attack.

Problem 4: Minimum time turning to a specified terminal position

Initial Conditions Terminal Conditions
Xo =0 Xf= 31680 ft = 6 miles
Yo =0 : Yf=31680 ft = 6 miles
Bo =0 Be = free

Vo = 2136.2 ft/sec Vf Z 1000 ft/ sec

Wo = 861 lbs Wf = 434 lbs

This problem is designed to force the appearance of a sustaining phase

where variable thrus: control is used. After 23 iterations we obtain

tfmin = 27.1559 second3. The trajectory ia composed of an initial coasting
arc of 19 seconds, followed by a sustaining arc of 5 seconds with a final
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boosting arc of 3 seconds, The thrust level for the sustaining arc is very
low and is nearly constant,

Fig.IV.1 shows the convergence of the final coordinates Xf an;i Y e
while Fig.IV. 2 shows the gonvergence of the final weight Wf.

Fig.IV.3 shows the optimal thrust profile and Fig.IV. 4 presents the
variation in the optimal bank angle,

Problem 5. Minimum time turning to a specified terminal position
Initial Conditions

Terminal Conditions

Xo = 0 X, =0

Yo = 0 Y, = 165600 ft = 20 miles
Bo =0 ﬁf = free

Vo = 2136, 2 ft/sec ‘v'f Z 1000 ft/sec

W, = 861 lbs W, = 434 Ibs

This problem is desinged to have a longer flying time, thus making the
variable thrust control more prominent, After 35 iterations we obtain

tfmm

= 45,029 seconds. The trajectory is of the type Coast-Sustain-Coast.

Fig.1V.5 shows the final trajectory, with the initial guessed irajectory.
The figure illustrates the efficiency of the numerical program.
Fig.IV. 6 shows the optimal thrust profile and Fig.IV.7 presents the
variation of the optimal bank angle,

B. Mach Dependent Aerodynamic Parameters

The program has been agsembled to include the case where the aero-

dynamic derivatives CDo (M) and k(M) in Eq. (IV.32) are functions of the Mach
number, The following numerical data are available for the rocket con-
sidered,
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a (deg )

.0 0,8

1.0
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Mach Numher

1,05

1.5

2,0

2.2

3.5 6.0

9
5
10
15
20
25
30

0

0.25 0.20
0.30 0.26
0.51 0.4%7
1.06 1.07
2,10 2,22
.3.b7 4;25

4.90

0.30 0.45

0.40
0.70
1,30
2,60
4,60
5.00

Liift Coefficient CL (@, M)

a (deg.)

0.0

0.50
0.80
1 41
2,67
4,68

0.40
G.45
0.75
1.35
2,60
4.390
5.60

0.33
0.38
G. 61
1.18
2,20
3.48

Mach Number

1.0

1.5

2.2

0.30
0.34
0.60
1.14
2,10
3.30
4,60

0.22 0.i5
0.27 0.18
0.48 0.41
1,00 0.92
1,90 1,¢7
3,05 2,84

Least squares is used to obtain the values of CD M) and k(M)
o
at each point, Then polyncmial regression curve fitting is applied

10 derive the expressions for the functions CDo M), k(M) and their deriva-

0

5
10
15
20
25
30

0.0

0.67
1.60
2.85
4.12
4.85

0.8
0.0
6.62

1.54
2.61
3.65
4,00
6.80

tives acDo/a M, 9k/oM.

By the end of each boosting phase, the velocity is usually in the hyper- %
sonic range. Since theoretically CDo ané k tend asymptotically tu cons:ant
values when M ~> «_ these functions are set constant for M 2 6, C.

0.0

0.70
1.80
2.90
4,00
6.00
7.00

0.0

0.77
1.85
2.18
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7.80
8.00
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Fig.JV.1 Convergence of the Final Coordinates (Problem 4)
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Fig,IvV,2 Convergence of the Final Weight' (Problem 4)
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3 V. QUALITATIVE ANALYSIS AND CONCLUSIONS

: One of the objectives of this study is to determine the conditions under
3 which a variable thrust magnitude prcegram is optimal, and in that case, its
relationship with missile parameters and tr:jectory. In the general case,
sucha relationship was displayed by Eq. (II.32) for the rocket motor with

constant exhaust velocity. For horiwonial, rectilinear flight, the variable

TN

thrust magnitude was given explicitly in terms of the flight velocity in Eq.

TRy

(II1,70), and for the case of turning flight with free terminal positions, it was
3 i . obtained through the Eq. (IIlI. 85) for flight at maximum lift and the Eq.

i (II1. 109) for flight using variable lift coefficient. In all these cases, the

' thrust magnitude is always decreasing along the sustaining flight path and
furthermore, it remains at low level for low Mach number. These conclu-

: sions have been subst.ntiated by an independent numerical study carried out

]
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;
g
3
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4
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in Chapter 1V,

If an ideal rocket motor where the thrust magnitude level is fully con-
trollable (motor represented by the system (S,;) in Chapter II) is available,
then the trajectory can be flown optimally. In practice, the rocket motor is

preprogrammed and in this chapter we shall compare the performances of

LR YNNI V. TN -39

Gl laciot s ann 2

some preprogrammed motors with an ideal motor.

We can classify rocket motors used in Air Force missions, in order ;
of increasing thrust controllability, as follows (Fig.V.1). :
1. Preprogrammed motors. The thrust profile is fixed at the time 1
of manufacture, ’
2, Preprogrammed pulse motors. The thrust profile is fixed at the

time of manufacture; however, the off time between pulses may be con-

trolled.
3. Stop-restart motors. This system permits motor shutdown and

restart at any time on command. The thrust level is either rated thrust or

2 Zero.

4. Step-thrust motors. This system has the capability of providing
thrust at more than two discrete levels. The on-off times and the order of
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thrust levels are variable on command,

‘ 5. Continuously variable motor. This system, idealized by our

model (S,) offers the capability to provide any thrust time profile within
specific limits of thrust and rate change of thrust.

As has been displayed explicitly by the equation (I, 32), whenever

2o L1 L M S IRkt L I e § Tl

- e—
U ST P PR S T RO,

variable thrust profile is optimal, it var. -+ ‘s function of the state variables
E% 'f, V and m and the adjoint components ;r and —l;v' The adjoint P is in-
£ volved only in the switching function K (Eq. II. 21) indicating the timing for
F stop and restart. It is known that the adjoint 'ﬁr and ';Sv depend on the termi- :
g nal conditions. Hence for each specified mission we have a resulting opti- E
‘ mal trajectory and a specified thrust profile,
1 The numerical examples given in Chapter IV clearly show that, unlike
g the simple case of horizontal rectilinear flight, the number of variables !
F involved in the optimization problem for minimum time turning flight requires

an important program for trajectory analysis in order to do an adequate
comparative qualitative analysis among the different types of motors. Al-
though this task is laborious, we believe that with cur analytical results

and numerical programs, the analysis can be easily carried out if sufficient
computational time is allowed.

In this concluding chapter we shall give this comparative analysis for

two specified problems given in Chapter IV, namely problem 2 and 4.

TS £ et b ot bt i T o S

We have seen in problem 4 that, by constraining the final position

el

(intercept problem), to meet the end-conditions, the trajectory usually in-

cludes a sustaining arc, where variable thrust is used. In general the vari-

TR TGN

able thrust level is low compared to the maximum thrust. Hence, in the

Mk L

: rockets used for the comparison we shall consider constant thrust at differ-
ent intermediate levels with variable on-off time, The results of the com-
parative analysis are given in the tables below.
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Case I:

Xf = free, Yf = free, pf = 135°, Vf 2 1000 ft/sec
Opti.nal Thrust Profile = Boost-Coast

Minimum time = 9,49 seconds

Xo=0 ,Yy =0 ,Po=0 , Vo =2136.2ft/sec, Wp = 861 lbs
W_ =434 1bs

f

Comparison with Pre-programmed Motors

Motor Thrust Profile (T in lbs) Time (sec)
Boost-Coast .
X T = 34,000 0Sts3.14 9.49 (minimum)
T=0 t>3.14
Sustain-Coast
T =12,500 0=t=9 11.2
2 T=0 t> 9
Sustain-Coast
T=6,640 0=t=6.25 12,04
3 T = 20,000 6.25<t=9.25
5 . T=0 t> 9.25
\ ‘ Sustain-Boost-Coast
g | T=7,900 O0=tse.25
- 4 T = 34,000 8.25< 59,25 12.17
i T=0 t> 9.25
: | snstain-Boost-Coast
f T=3,330 0Sts725
5 T = 34,000 7.25<t= 9,25 13.37
T=0 t>9.25

The comparison in this case shows the influence of the timing and the

order in the sequence of arcs,
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Case 2;

X, =0 , Y =0 » Bo =0 , Vg =2136,21t/sec, Wy = 861 lbs
X, = 31680 ft, Y, = 31680 ft, Bg = free, V, Z 1000 fi/sec , W, = 434 lbs
Optimal Thrust Profile = Coast-Sustain-Boost -
Minimum Time = 27,16 seconds
Comparison with Pre-programmed Moi.qrs
Motor Thrust Profile (T in lbs) Time (sec)
! Coast-Sustain-Boost 21,16 @minimum)
(Fig. IV.3) ’
Coast-Boost
2 T=0 0=ts24 27,20
T = 34,000 t> 24
Coast-Sustain-Boost
T=0 0=t =23
3 T =~4,250 23<t=25 28.157
T = 34,000 25<t=28

The comparison in this case shows that the variable thrust can be

adequately approximated by either a aull thrust or a constant low level thrust.

The problem of minimum time turning in horizontal flight has been chosen
for our numerical analysis but the computer program can be adapted for
other types of performance indices such as maximum coverige {reachable
sets). Furthermore, it can be used to solve optimization problems for

flight in three~dimensional space,

Also the analytical results presented in this report have been extended
to the case of optimal aerodynamic and thrusting maneuvers for three di-
mensional flight in a general graviiational force field (Refs, 9-11),
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